

SuperPrep Cell Lysis & RT Kit for qPCR 1402

F1267K

SuperPrep® Cell Lysis & RT Kit for qPCR

SCQ-101 100 reactions Store at -20°C

SuperPrep[®] Cell Lysis Kit for qPCR

SCQ-201 100 preparations Store at -20°C

Contents

- [1] Introduction
- [2] Components
- [3] **Protocol**
 - 1. Preparation of cell lysate
 - 2. Reverse transcription
- [4] Real-time PCR
 - 1. For assays using two-step real-time PCR reagents
 - 2. For assays using one-step real-time PCR reagents
- [5] **Application data**
- [6] **Troubleshooting**
- [7] Related products

CAUTION

All reagents in this kit are intended for research purposes. Do not use for diagnostic or clinical purposes. Please observe general laboratory safety precautions while using this kit.

- ReverTra Ace® and SuperPrep® are registered trademarks of Toyobo Co., Ltd., Japan.

-LightCycler[™] is a trademark of Idaho Technology, Inc. and Roche Molecular Systems, Inc.

-SYBR[®] is a registered trademark of Molecular Probes, Inc.

-TaqMan[®] is a registered trademark of Roche Molecular Systems, Inc.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

[1] Introduction

Description

SuperPrep[®] Cell Lysis & RT Kit for qPCR (Code No. SCQ-101) consists of "Lysis Reagents" and "RT Reagents" for synthesis of cDNA templates for real-time PCR assays. "Lysis Reagents" prepares cell lysates containing RNAs that can be used as templates for reverse transcription. "RT Reagents" contains reagents for reverse transcription, optimized for efficient cDNA synthesis from crude lysates. The synthesized cDNA can be applied to real-time PCR directly. This assay system is suitable for high-throughput assays.

SuperPrep[®] Cell Lysis Kit for qPCR (Code No. SCQ-201) is an option of "Lysis Reagents". The cell lysate prepared by "Lysis Reagents" can be applied to one-step real-time PCR.

Features

-RNA purification is not necessary.

Cell lysates can be prepared as effective templates for cDNA synthesis, reducing the total assay time.

-High-quality cDNA can be obtained from cell lysates.

The optimized lysis solution efficiently inhibits RNA degradation during treatment. RNA in the lysate is stable on ice for at least 2 h. High-quality cDNA can be synthesized using highly efficient reverse transcriptase "ReverTra Ace[®]" with low contamination of genomic DNA because of preceding DNase I treatment. The reverse transcriptase is supplied as a master mix reagent containing optimally mixed primers (random and oligo dT) to achieve effective cDNA synthesis.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

Table	e I Cells test	ed by this system	n	
	Cell Name	Adherent/ Non-adherent	Species	Remarks
1	A431	Adherent	H. sapiens	epidermoid carcinoma cell line
2	C ₂ C ₁₂	Adherent	M. musculus	myoblast cell line
3	Caco-2	Adherent	H. sapiens	colon adenocarcinoma cell line
4	CHO-K1	Adherent	C. griseus	ovary cell line
5	COLO205	Non-adherent	H. sapiens	colon adenocarcinoma cell line
6	DLD-1	Adherent	H. sapiens	colon adenocarcinoma cell line
7	HCT-15	Adherent	H. sapiens	colon adenocarcinoma cell line
8	HDF	Adherent	H. sapiens	primary foreskin fibroblasts (primary cell)
9	HEK293	Adherent	H. sapiens	embryonic kidney cell line
10	HeLa S3	Adherent	H. sapiens	cervix carcinoma cell line
11	HepG2	Adherent	H. sapiens	hepatocellular carcinoma cell line
12	HUVEC	Adherent	H. sapiens	umbilical vein endothelial cells (primary cell)
13	Jurkat	Non-adherent	H. sapiens	T lymphocyte cell line
14	K562	Non-adherent	H. sapiens	myelogenous leukemia cell line
15	KUSA-A1	Adherent	M. musculus	bone marrow stromal stem cell line
16	L929	Adherent	M. musculus	aneuploid fibrosarcoma cell line
17	MCF7	Adherent	H. sapiens	breast adenocarcinoma cell line
18	Neuro2a	Adherent	M. musculus	neuroblastoma cell line
19	NIH-3T3	Adherent	M. musculus	embryo fibroblast cell line
20	PC12	Adherent	R. norvegicus	adrenal pheochromocytoma cell line
21	rMSC	Adherent	R. norvegicus	bone marrow stromal stem cells (primary cell)
22	THP-1	Non-adherent	H. sapiens	acute monocytic leukemia cell line
23	U937	Non-adherent	H. sapiens	leukemic monocyte lymphoma cell line

Table 1 Cells tested by this system

-Reduction of dispersion on high-throughput assay

Decreasing the small-volume dispensing and dilution steps from the protocol reduced the dispersion of data in a high-throughput assay. Integrating or omitting some steps improved the usability. Cells can be lysed on the culture plate without pipetting, and DNase I treatment can be performed at the same time as the lysis step. The DNase I reaction can be stopped by adding "Stop Solution". Additional purification or heating steps are not necessary.

-Various real-time PCR reagents can be applied

The synthesized cDNA can be used in various real-time PCR assay (TaqMan[®] probe, SYBR[®] Green etc). The examples using THUNDERBIRD[®] qPCR Mix (Code No. QPS-101, QPS-201) are detailed in [4] 1.

In addition, the cell lysate can be applied to one-step real-time PCR reagents. The examples using RNA-directTM real-time PCR Master Mix (Code No. QRT-101, 201) are detailed in [4] 2.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

[2] Components

The kits include the following reagents, which can be used for 100 (SCQ-101), 20 (SCQ-101S), 100 (SCQ-201) and 20 (SCQ-201S) reactions. SCQ-101 and SCQ-101S contain two separate packages named "Lysis Reagents" and "RT Reagents", respectively. All reagents should be stored at -20°C.

SuperPrep® Cell Lysis & RT Kit for qPCR (Code No. SCQ-101, SCQ-101S)

<lysis reagents=""> Lysis Solution^{*1} gDNA Remover Stop Solution RNase Inhibitor</lysis>	SCQ-101 5.5 ml 33 μl 1.1 ml 55 μl	SCQ-101S (SAMPLE) 1.1 ml 6.6 μl 220 μl 11 μl
<rt *2="" reagents=""></rt>	9601	1721
$5 \times RT$ Master Mix $5 \times RT$ Master Mix no-RT Control	860 μl 86. μl	$1/2 \mu l$ 17 µl
Nuclease-free Water	$1.7 \text{ ml} \times 2$	680 μl

SuperPrer® Cell Lysis Kit for qPCR (Code No. SCQ-201, SCQ-201S)

	SCQ-201	SCQ-201S	(SAMPLE)
Lysis Solution ^{*1}	5.5 ml	1.1 ml	
gDNA Remover	33 µl	6.6 µl	
Stop Solution	1.1 ml	220 µl	
RNase Inhibitor	55 µl	11 µl	

- *1 Lysis Solution can be stored at 2–8°C for 5 months. However, Lysis Solution contains gDNA Remover and should not be stored at 2–8°C.
- *2 For extended storage of "RT Reagents", -30°C is recommended.

Lysis Solution

Lysis Solution should be used with gDNA Remover to protect RNA in the cell lysate. The solution also minimizes the inhibition of cDNA synthesis by cell components.

gDNA Remover

gDNA remover is an optimized DNase I solution to degrade contaminated gDNAs in the cell lysate. gDNA Remover should be used with Lysis Solution.

Stop Solution

Stop Solution contains components that inhibit enzymes in the cell lysate.

RNase Inhibitor

RNase Inhibitor should be used with Stop Solution to inhibit RNase in the cell lysate.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

5× RT Maser Mix

This reagent is a 5× master mix that contains highly efficient reverse transcriptase "ReverTra Ace[®]", RNase Inhibitor, oligo dT primer, random primer and dNTPs.

5× RT Maser Mix no-RT Control

The composition of " $5\times$ RT Master Mix no-RT Control" is identical to that of " $5\times$ RT Master Mix" except that the reverse transcriptase (RT) is omitted. This master mix can be used in control experiments because of the absence of reverse transcriptase.

Nuclease-free Water

This nuclease-free water has been prepared without DEPC treatment.

[3] Protocol

1. Preparation of cell lysates

- (1) For adherent cells cultured in a 96-well culture plate
- a. Seed an appropriate number of cells in a 96-well culture plate.

Notes

Lysis Solution can treat $1 \times 10^{1-7} \times 10^4$ cells. However, excessive cells cause an insufficient lysis, inhibition of RT-PCR and partial digestion of genomic DNA. The cell number for treatment should be determined by a preliminary experiment when treating >10⁴ cells.

- b. Culture and incubate the cells.
- c. Remove the medium from the wells.
- d. Add 100 μl of PBS(-) to the wells.
- e. Remove PBS(-) from the wells.
- f. [Preparation of Lysis Solution with gDNA Remover]

Add 0.3 μ l gDNA Remover to 49.7 μ l Lysis Solution. The mixture can be prepared as one solution according to sample numbers. When using a multi-channel pipet, the amount of the mixture should be increased by about 10% because of waste.

Notes

Do not store the mixed solution.

- g. Add 50 µl Lysis Solution with gDNA Remover to wells.
- h. Mix the plate gently using a plate mixer or tapping with hands for 30 sec and incubate at room temperature for 4.5 min.

Notes

The lysate can be stored on ice up to 2 h.

JAPAN
TOYOBO CO., LTD.
Tel(81)-6-6348-3888
www.toyobo.co.jp/e/bio
tech_osaka@toyobo.jp

i. [Preparation of Stop Solution with RNase Inhibitor] Add 0.5 μl RNase Inhibitor to 9.5 μl Stop Solution. The mixture can be

Add 0.5 µl KNase inhibitor to 9.5 µl Stop Solution. The mixture can be prepared as one solution according to sample numbers. When using a multi-channel pipet, the amount of the mixture should be increased about 10% because of waste.

- j. Add 10 μl Stop Solution with RNase Inhibitor to wells.
- k. Mix the plate gently using a plate mixer or tapping with hands for 30 sec and incubate at room temperature for 1.5 min.

Notes

In the case of cells that exhibit high RNase activity, the lysate should be incubated on ice to obtain better reproducibility.

l. Transfer the plate to ice.

Notes

-cDNA should be synthesized using the lysate as soon as possible, although the stability of the RNA in the lysate has been confirmed as at least 2 h. The lysate should be stored at -80°C for 2 weeks. -The synthesized cDNA can be stored stably.

- (2) For non-adherent cells cultured in a 96-well culture plate
- a. Seed an appropriate number of cells in a 96-well culture plate.

Notes

Lysis Solution can treat $1 \times 10^{1-7} \times 10^4$ cells. However, excessive cells cause an insufficient lysis, inhibition of RT-PCR and partial digestion of genomic DNA. The cell number for treatment should be determined by a preliminary experiment when treating >10⁴ cells. The cell number for the assay should be adjusted by removing an appropriate number of cells from wells.

- b. Culture and incubate the cells.
- c. Centrifuge the plate at 2,000 rpm for 5 min using a plate centrifuge.
- d. Remove the medium.

Notes

The medium should be removed by pipetting or aspiration. Decantation is not recommended.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

e. Add 100 µl of PBS(-).

Notes

Pipetting is not necessary.

- f. Centrifuge the plate at 2,000 rpm for 5 min using a plate centrifuge.
- g. Remove the PBS(-).
- h. Go to [3] 1.(1) f.
- (3) For cells cultured in plates (except 96-well plates)
- a. Harvest the cells into a centrifuging tube and count the cell number.
- b. Pellet the cells and suspend the cells in $PBS(\cdot)$.
- c. Adjust the cell density to $< 1 \times 10^7$ cells/ml by PBS(·).
- d. Dispense 5 μl of cell suspension into the wells.
- e. Go to [3] 1.(1) f.

2. Reverse transcription

(1) [Preparation of reaction mixture (40 μ l reaction)]

Add 8 µl 5×RT Master Mix to 24 µl Nuclease-free water in a tube. The mixture can be prepared as one solution according to sample numbers. When using a multi-channel pipet, the amount of the mixture should be increased by about 10% because of waste.

Notes

For the negative control experiments without the reverse transcriptase, $5 \times$ RT Master Mix no-RT Control can be used. The kit (Code No.: SCQ-101) contains sufficient no-RT control for 10 reactions.

- (2) Dispense $32 \mu l$ reaction mixtures into a PCR plate.
- (3) Add 8 µl of the lysate [from [3] 1.(1) l.] and mix gently.
- (4) Spin down the solutions.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

- (5) Incubate the mixture as follows:
 - 37°C, 15 min 50°C, 5 min 98°C, 5 min 4°C, Hold
- (6) Go to the real-time PCR step.

Notes

The synthesized cDNA can be stored at 4°C for a week and -20°C long term.

[4] Real-time PCR 1. For assays using two-step real-time PCR reagents

The synthesized cDNA (from [3]2,(6)) can be applied to various kinds of real-time PCR assay directly. Ten to 15% (v/v) cDNA can be added to the PCR reaction to achieve good reproducibility. The optimal amount of cDNA should be determined by preliminary tests. The conditions for several real-time PCR reagents are shown below as examples.

(1) **THUNDERBIRD[®]** Probe qPCR Mix (Code No. QPS-101) for TaqMan[®] assay The detailed conditions should be referred to in the instruction manual of THUNDERBIRD[®] Probe qPCR Mix (Code No. QPS-101).

a. Reaction setup

	Reaction v	olume	Final
Reagent	50 µl	20 µl	concentration
DW	X μl	Xμl	
THUNDERBIRD [®] Probe qPCR Mix	25 µl	10 µl	1×
Forward primer	15 pmol	6 pmol	0.3 µM
Reverse primer	15 pmol	6 pmol	0.3 μΜ
TaqMan [®] Probe	10 pmol	4 pmol	$0.2 \; \mu M^{*1}$
50× ROX reference dye	1 μl / 0.1 μ	1 0.4 μl / 0.04	4 μ l 1× / 0.1× ^{*2}
cDNA solution	~7.5 µl	~3 µl	
Total	50 µl	20 µl	

*1 50× ROX reference dye must be added when using real-time cyclers that require a passive reference dye, according to Table 1. Table 1 shows the optimum concentration of the ROX reference dye. This dye is not necessary for real-time cyclers that do not require a passive reference dye.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

Real-time cycler	Optimal dye concentration
	(dilution ratio)
Applied Biosystems 7000, 7300, 7700, 7900HT	1× (50:1)
StepOne [™] , StepOnePlus [™] etc.	
Applied Biosystems 7500, 7500Fast,	0.1×(500:1)
Agilent cyclers (Optional) etc.	
Roche cyclers, Bio-Rad cyclers, BioFlux cyclers etc.	Not required

Table 1 Recommended ROX dye concentration

b. PCR cycling condition

The following table shows the recommended thermal conditions using primers designed according to the recommended primer and probe conditions described in the instruction manual of THUNDERBIRD® Probe qPCR Mix (Code No. QPS-101).

<two-step cycle=""></two-step>	Temperature	Time	Ramp	
Pre-denaturation:	95°C	60 sec ^{*1}	Maximum	
Denaturation:	95°C	15 sec ^{*2}	Maximum	←] 40 1
Extension:	60°C	60 sec	Maximum	40 cycles
	(data collection			

^{*1} In the anti-Taq antibody hot start PCR system, the pre-denaturation can be completed within 60 sec. The pre-denaturation time should be determined according to the recommendations of each real-time cycler. If the optimal pre-denaturation time cannot be determined, the time should be set at 60 sec.

Table 2 The recommended pre-denaturation time for each real-time cycler	Table 2	The recommended	pre-denaturation	time for eac	h real-time cycler
--	---------	-----------------	------------------	--------------	--------------------

Real-time cycler	Pre-denaturation time
High-speed cycler (e.g. Applied Biosystems 7500Fast)	20 sec
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0)	30 sec
General real-time cyclers (e.g. Applied Biosystems 7700,	60 sec
7500, 7900HT [normal block], StepOne [™] , StepOnePlus [™]	
Agilent cyclers, BioFlux cyclers)	

*2 The following table shows the optimal denaturation times for each real-time cycler. If the optimal denaturation time cannot be determined, the time should be set at 15 sec.

Table 3 The recommended denaturation time for each real-time cycle

Real-time cycler	Denaturation time
High-speed cycler (e.g. Applied Biosystems 7500Fast)	3 sec
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0)	5 sec
General real-time cyclers (e.g. Applied Biosystems 7700,	15 sec
7500, 7900HT [normal block], StepOne [™] , StepOnePlus [™]	
Agilent cyclers, BioFlux cyclers)	

-	-	_	-	
	Δ	Р	Δ	N
v	~		~	

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

(2) THUNDERBIRD[®] SYBR[®] qPCR Mix (Code No. QPS-201) for SYBR[®] Green I assay

The detailed conditions should be referred to in the instruction manual of THUNDERBIRD[®] SYBR[®] qPCR Mix (Code No. QPS-201).

a. Reaction setup

	Reaction volume		Final	
Reagent	50 µl	20 µl	concentration	
DW	X μl	X μl		
THUNDERBIRD [®] SYBR [®] qPCR Mix	25 µl	10 µl	1×	
Forward primer	15 pmol	6 pmol	0.3 µM	
Reverse primer	15 pmol	6 pmol	0.3 μΜ	
50× ROX reference dye	1 µl / 0.1 µl	0.4 µl / 0.04	$\mu l = 1 \times / 0.1 \times^{*1}$	
cDNA solution	~7.5 µl	~3 µl		
Total	50 µl	20 µl		

*1 50× ROX reference dye must be added when using real-time cyclers that require a passive reference dye, according to Table 1. Table 1 shows the optimum concentration of the ROX reference dye. This dye is not necessary for real-time cyclers that do not require a passive reference dye.

Table 1	Recommended RO	X dye concentration
---------	----------------	---------------------

Real-time cycler	Optimal dye concentration
	(dilution ratio)
Applied Biosystems 7000, 7300, 7700, 7900HT	1× (50:1)
StepOne [™] , StepOnePlus [™] etc.	
Applied Biosystems 7500, 7500Fast,	0.1×(500:1)
Agilent cyclers (Optional) etc.	
Roche cyclers, Bio-Rad cyclers, BioFlux cyclers etc.	Not required

b. PCR cycling conditions

The following table shows the recommended thermal conditions using primers designed according to the recommended primer and probe conditions described in the instruction manual of THUNDERBIRD[®] SYBR[®] qPCR Mix (Code No. QPS-201).

<two-step cycle=""></two-step>	Temperature	Time	Ramp	
Pre-denaturation:	95°C	60 sec ^{*1}	Maximum	
Denaturation:	95°C	15 sec ^{*2}	Maximum	←] 40 1
Extension:	60°C	60 sec	Maximum	40 cycles
(data collection should be set at the extension step)				

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD.

Tel(86)-21-58794900.4140

^{*1} In the anti-Taq antibody hot start PCR system, the pre-denaturation can be completed within 60 sec. The pre-denaturation time should be determined according to the recommendations of each real-time cycler. If the optimal pre-denaturation time cannot be determined, the time should be set at 60 sec.

Table 2	The recommended	pre-denaturation tin	me for each	real-time cycler
---------	-----------------	----------------------	-------------	------------------

Real-time cycler	Pre-denaturation time
High-speed cycler (e.g. Applied Biosystems 7500Fast)	20 sec
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0)	30 sec
General real-time cyclers (e.g. Applied Biosystems 7700,	60 sec
7500, 7900HT [normal block], StepOne [™] , StepOnePlus [™]	
Agilent cyclers, BioFlux cyclers)	

^{*2} The following table shows the optimal denaturation times for each real-time cycler. If the optimal denaturation time cannot be determined, the time should be set at 15 sec.

Table 3	The recommended	denaturation	time for	each real-time	cycler
---------	-----------------	--------------	----------	----------------	--------

Real-time cycler	Denaturation time
High-speed cycler (e.g. Applied Biosystems 7500Fast)	3 sec
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0)	5 sec
General real-time cyclers (e.g. Applied Biosystems 7700,	15 sec
7500, 7900HT [normal block], StepOne [™] , StepOnePlus [™]	
Agilent cyclers, BioFlux cyclers)	

^{*3} Detailed conditions for the melting curve analysis should be referred to in the instruction manuals of the real-time PCR reagents.

(3) Other real-time PCR reagents

The synthesized cDNA (from [3]2(6)) can be applied to various kinds of real-time PCR assay directly. Ten to 15% (v/v) cDNA can be added to the PCR reaction to achieve good reproducibility. The optimal amount of cDNA should be determined by preliminary tests. The detailed conditions should be set for each real-time PCR reagent.

Notes

In the case of real-time PCR reagents with hot start technology based on chemical modification, the cDNA should be added up to 10% (v/v) in the PCR reaction.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

10

2. For assays using one-step real-time PCR reagents

The cell lysates (from [3]1(1) l) can be applied to various kinds of one-step real-time PCR assay directly. The optimal amount of cDNA should be determined by preliminary tests. The conditions for several one-step real-time PCR reagents are shown below as an example.

(1) *RNA-direct*[™] Real-time PCR Master Mix (Code No. QRT-101) for TaqMan[®] assay.

The detailed conditions should be referred to in the instruction manual of RNA-directTM Real-time PCR Master Mix (Code No. QRT-101).

a. Reaction setup

	Reaction volume		Final
Reagent	50 µl	20 µl	concentration
DW	X μl	X μl	
RNA-direct TM Real-time PCR Master Mi	25 µl	10 µl	1×
50 mM Mn(OAc) ₂	2.5 µl	1 µl	2.5 mM
Forward primer	15 pmol	6 pmol	0.3 μΜ
Reverse primer	15 pmol	6 pmol	0.3 μΜ
TaqMan [®] Probe	10 pmol	4 pmol	0.2 μΜ
Cell lysate ([3]1(1) 1)	2.5–5 μl	1–2 µl	
Total	50 µl	20 µl	

b. PCR cycling condition

The following table shows the recommended thermal conditions using primers designed according to the recommended primer and probe conditions described in the instruction manual of *RNA-direct*TM Real-time PCR Master Mix (Code No. QRT-101) for TaqMan[®] assay.

<two-step cycle=""></two-step>	Temperature	Time	Ramp	
Pre-denaturation:	90°C	30 sec	Maximum	
Reverse transcription:	55°C	20 sec	Maximum	
Denaturation:	95°C	60 sec	Maximum	
Denaturation	95°C	15 sec	Maximum	1 40 avala
Extension:	60°C	60 sec	Maximum	
	(data collection	should be set	at the extension step)	

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

11

(2) *RNA-direct[™]* SYBR[®] Green Real-time PCR Master Mix (Code No. QRT-201) for SYBR[®] Green I assay.

The detailed conditions should be referred to in the instruction manual of RNA-directTM SYBR[®] Green Real-time PCR Master Mix (Code No. QRT-201).

a. Reaction setup

	Reaction volume		Final	
Reagent	50 µl	20 µl	concentration	
DW	Xμl	X μl		
<i>RNA-direct</i> [™] SYBR [®] Green Real-time PCR Master Mix	25 µl	10 µl	1×	
50 mM Mn(OAc) ₂	2.5 µl	1 µl	2.5 mM	
Forward primer	10 pmol	4 pmol	0.2 µM	
Reverse primer	10 pmol	4 pmol	0.2 µM	
Cell lysate ([3]1(1) 1)	2.5–5 µl	1–2 μl		
Total	50 µl	20 µl		

b. PCR cycling condition

The following table shows the recommended thermal conditions using primers designed according to the recommended primer conditions described in the instruction manual of RNA-directTM SYBR[®] Green Real-time PCR Master Mix (Code No. QRT-201).

<three-step cycle=""></three-step>	Temperature	Time	Ramp	
Pre-denaturation:	90°C	30 sec	Maximum	
Reverse transcription:	55°C	20 sec	Maximum	
Denaturation:	95°C	60 sec	Maximum	≁ ¬
Annealing	55°C	15 sec	Maximum	40 cycle
Extension:	74°C	60 sec	Maximum	
	(data collection should be set at the extension step)			
	Melting / Dissociation Curve Analysis			
Extension:	/4*C 60 sec Maximum (data collection should be set at the extension step) Melting / Dissociation Curve Analysis			

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

12

[5] Application data

1. Comparison of the efficiency with purified RNA

SuperPrep[®] Cell Lysis & RT Kit for qPCR (Code No SCQ-101) synthesized cDNA using the lysate from 2.5×10^4 HEK293 cells in a 40 µl reaction. cDNA was synthesized using 66.6 ng of total RNA, corresponding to 2.5×10^4 HEK293 cells, using a cDNA synthesis kit (ReverTra Ace[®] qPCR RT Master Mix [Code No. FSQ-201]) in a 40 µl reaction. Fifteen housekeeping genes were then analyzed by SYBR[®] Green real-time PCR using the synthesized cDNA.

High correlation was observed between the two methods. The method using *SuperPrep*[®] facilitated the expression analysis by real-time PCR without time-consuming RNA purification steps.

2. Evaluation of the assay variation

HeLa S3 cells were incubated with or without 100 nM phorbol 12-myristate 13-acetate (PMA) for 24 h after seeding at 2×10^4 cells/well in a 96-well culture plate. cDNA were synthesized from the lysates prepared from the cells washed with PBS(-).IL-6, IL-1 β and β -actin genes were detected by TaqMan[®] real-time PCR assay with THUNDERBIRD[®] Probe qPCR Mix (Code No. QPS-101). After compensation of the Cts of IL-6 and IL-1 β by that of β -actin, the $\Delta\Delta$ Ct between with or without PMA and Z' factors^{*1} were calculated.

Z' factors from SuperPrep[®] were superior to that from the other system (Company A).

^{*1} The Z' factor is a simple statistical parameter that is used to assess the quality of high-throughput screening (HTS) assays. A Z' score of 0.5 is generally considered to indicate good quality Z' can be calculated by the following formula.

 $Z'= 1-3 \times [\Delta Ct(+) \text{ standard deviation} + \Delta Ct(-) \text{ standard deviation}]/|\Delta \Delta Ct|$

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

13

www.toyobo.co.jp/e/bio

<u>IL-6</u>		Ct (IL-6)	ΔCt (IL-6- β -actin)			
	PMA	Mean	Mean	S.D.	$\Delta\Delta Ct$	Z'
SuperPrep®	(+)	26.96	6.27	0.14	-3.85	0.62
	(-)	30.24	10.12	0.35		
Company A	(+)	26.50	4.30	0.34	-3.88	0.59
	(-)	29.44	8.18	0.19		

<u>IL-1β</u>		Ct (IL-1β)	$\Delta Ct (IL-1\beta-\beta-actin)$			
	PMA	Mean	Mean	S.D.	$\Delta\Delta Ct$	Z'
SuperPrep [®]	(+)	28.62	7.93	0.15	-5.94	0.74
	(-)	33.99	13.87	0.38		
Company A	(+)	28.00	5.80	0.47	-6.19	0.61
	(-)	33.26	11.99	0.34		

3. Stability test of cell lysates

cDNA were synthesized from lysates that had been left on ice for 0–24 h after lysing of 4×10^4 HeLa and U937 cells using *SuperPrep*[®]. β -actin genes were detected using TaqMan[®] real-time PCR assay with THUNDERBIRD[®] Probe qPCR Mix (Code No. QPS-101). The results were compared with that from the other company's system (Company A).

The results suggest that the RNA in the cell lysates is stable for at least 2 h. Lysates from U937 cells showed higher RNase activity than the other cells and tended to deteriorate in storage over 2 h.

Notes

RNase activity depends on the type and number of cells. The cell lysates should be placed on ice after preparation and cDNA should be synthesized immediately after preparing the lysates to minimize RNA degradation.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

14

[6] Troubleshooting

Symptom	Cause	Solution
No or low signal on real-time PCR	Excessive number of cells on lysate preparation	Excessive cellular compounds may inhibit cDNA synthesis and qPCR steps. Decrease the number of cells in the lysate preparation or dilute the cell lysates by the same solution before cDNA synthesis.
	Degradation of RNA	 -cDNA should be synthesized immediately after preparing the cell lysates, especially on the cells exhibiting high RNase activity. (Cell lysates from general cells can be stored stably on ice for at least 2 h.) -The cell lysates should be stored at -80°C avoiding freezing and thawing. -Harvested cells should be stored at -80°C after washing PBS(-).
	Excess amount of cDNA solution compared with the total PCR reaction volume	Ten to 15% (v/v) cDNA solution can be added to the PCR reaction. However, tolerance of the amount of the cDNA solution in the reaction may vary. The optimal amount of cDNA should be determined by preliminary tests. The conditions for several real-time PCR reagents are shown below as examples.
Low yield	Cell lysis step was insufficient	Mix thoroughly after mixing Lysis Solution and Stop Solution.

[7] Related products

Product name	Package	Code No.
Real-time PCR master mix for probe assay		
THUNDERBIRD [®] Probe qPCR Mix	$1.67 \text{ ml} \times 3$	QPS-101
Real-time PCR master mix for SYBR [®] Green assay		
THUNDERBIRD [®] SYBR [®] qPCR Mix	1.67 ml × 3	QPS-201
One-step Real-time PCR master mix for probe assay		
RNA-directTM Real-time PCR Master Mix	$0.5 \text{ ml} \times 5$	QRT-101
One-step Real-time PCR master mix for SYBR® Green assay		
<i>RNA-direct</i> TM SYBR [®] Green Realtime PCR Master Mix	0.5 ml × 5	QRT-201

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp